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ABSTRACT

A Monte <arlc investigation of six rorhust rzrrelation
estimators was conductec for data from distri. :zioms with
longer than Gaussian tails: a Dbisquare coefficieni. the
Tukey correlation, the standardized sums and differences, a
biveight standardized sums and differences, the transformped
Spearman's rho and a bivariate trimmed Pearson. Evaluation
of the estimators was based on bias and variability as
‘measured by mean square error, and efficiemcy relative to
" the Pearson correlation coefficient. Co:relationé of .9,
.3, B, and .0 for samples of size twenty and forty for

different weight tails vere used. -



Tw INTRCIZTITTION

Dt g the pas: <tz decade=,, resea—chers have been

investﬁ:#'ing The v=ziidity apd =ficiency of least squares
estimazors when th= assuapfion of = Gaussizn distribution is
violat=1 and have <clearly Jemcmstratec¢ the inadequacy of
such =stimators, 1imcludicg <The Pearscn product-monent
corrélation cozfficient, for dist—ibutions with longer thah
Gaussian tails. L ney z_z=ss of estimators, called resistant
and robust, has been prorosed to e—timate parameters of long
;ailed distribetions {(Z=xm=l, 1977 Hogg, 1967; Huber,
1972; Hainer, 1976). i distinctionm beéetween resistance and
robustness is not always —Ffear in the 1literature and the’
term robust is often used to describe both properties.
Resistance refers to the ability of a summary statistic to
remain constant in view of a change in a small part of the
data, no matter what part or how substantial the change.
The term robustness does not have singular meaniiig and in
the context of thié paper refers to the tariahility of the

estimator.

The resistant and robust estimation of parameters:
involves the transformation of the observations to soRe
other vaiuesvsuch as ranks and/or the differemtial treatment
’of the observatigns such as the trimming of extrenme
observations or the weighting of all observations by some
schene. RésiStént and robust ‘locétion and regressién

estimators have been studied extensively (Andrews, Bickel,
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Hampel, Huber, Rogers and Tukey, 1972; Andrews, 1974;
Gross, 1976, 1977; Huber, 1977; | Maronna, 1976; Ramsay,
1977), but the investigation of such correlation estimators
is limited (Denby and lLarson, 1977; Devlin, Gnanadesikan
and Kettenring, 1975; Gnanadesikan and Kettenring, 1972;
Hainer and Thissen, 1976). Unlike the least squares
solution, there is not a unique relationship betwueen
correlation and regression for most robust and resistant
estimators. ‘ The literatures are therefore separate and

distincta.

The criteria for the treatment of observations for the
estimation of the correlation coefficient nust take into
account the position/value of an observation within the
respective univariate distributions as well as the biwariate
distributione. Rhile no one estimator has demonstrated
overall suéeriority, - the - more promising correlation
estimators involve‘trimming in the univariate context of the
X and Y distributions and the bivariate context of thé najor

and Minor axXesSa.

This study compares six of the nore promising robust
correlation estimatorse. Mean square error and efficiency

relative to the Pearson are used to evaluate the estimators.
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2. ROBOUST CORRELATION ESTIMATIION

One of the first pgbers to give an overview of t:zo
problems of nultivariate estimation is Gnaradesikan e ...
Kettenring (1972). They base the estimaticn of <correlatZox

on the quarter square identity

cov{X,Y) = 1/4 [var{X ¢ ¥) - var{X ~ Ij} 2.1

and using the usual standard deviations s{¥} and s(Y¥) ocbtain

_ the Pearson correlation coefficient,

r{P) = cov(X,¥)/s(%) s(Y). _ 2.2

Standardized Sums and Differences - r¥{SSD)

Robust correlation estimators can be obtained by using
any robust estimators of scale to calculate estimates of the
variamces and standard deviations and using then in

ejuations 2.1 and 2.2.

A problem with this procedure is that the robust
correlation estimates may aot 1ie within the bounds [-1,
+13. The solution is to standardize the = univariate

distributions first, using robust estimators of location and

scale, t* and s¥*, respectively. Let

x = (X-t¥(X))/s*(x) and y = (I-t*(1))/s*{¥). 2.3

The resulting robust estimator is called the standardized

sums and differences,'t*}ssn),

6

.



2 2 2 2
C#*155D) = gS*(z+y) -s*(x-y) )/{s¥(x+y) +37 -y ). Z.

Any robust location and scale estimators =ap be used
hat the estimstcrss npost often used are 1.0% =ymm:stTically
<-ipmed m=ans and variances. {In this paper, tk= :=rzming
rzrcentare refers to the total trimmed, one 22. £ of the
r2rcent £-om each 2nd of the digtribution.) Thixs astimmtor
pecfornei well in stuvdies by Deviin, et al. =z=2£3 Demby and

Lazys0n.

This approach ‘ looks first: at fhe univariate
distribkrtions iandependently and then the mzjor (x+y) and
ninor {z~7) axes of the bivariate space. It is: important to
note tiat am observation which is considered a univariate
outlier might not be cbnsideted a bivariate outlier when we

exapine the scatter plot of the data and visa versa.

Biveiqht Standardized Sums and Differences -~ r#*{BSD)

In a study of confidence interval robustness for the
'correlétion coefficient, Chou {1980) developed a biweight
neasure of correlation haviné the form of the standardized
sums and differences {2.4) but used the biweight location
ang bar statistics ({Mosteller ana Tukey, 1977) as the
estimators of location and scale. This estimator will be

denoted as r*({BSD). in the Chou study it demonstrated

robustness in several situations but its properties as a

point estimator are unknown.
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The biweight statistic 1is an iterative raximum

likeliheood estimator of location. Let

te =>w x© /s 2>% 2.5
¥l ik % ik
Wh=
2 2 2
& = {1 - u ) if u <1
‘ i i
2
= 0 if a > 1 2.6
i
| e = (X =~ t* ) / ca* 2.7
i b k=1 k-1

.z=d k refers to the kth iteration, ¢ is some constant and s¥

is a measure of scale.

In this study, ¢ = 9 and the mediam of the absolute

deviations (BEiD) vas used as the measure of scalea

The corresponding emeasure of scale is called “bar" for

robust variance.

_ 2 2 4
. b 2V {X=t*) {(1-u )
bar {(X) = e ———————————— 2.8
_ 2 2 _ 2 2
[2*{1-u ) (1-5u ) J[-1+#2* (1-u ) (1-5u ) ]

: 2
where >' means to sum only those observations where u £ 1.

Ly
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Tukey Correlation - r#*(t)

The Tunkey correlation is also based an the quar=er
square identity vwhere s* 1is an unbiased =stimator of zhe
standard deviation and a robust measure oI scale obtained

from the order statistics of the observations. Let

X" = X/S% (X) and g% = Y/SETT 2.9
then
. 2 2
c*(t) = /4 [(s*(x" + y¥*)) - {s*¥(x" - ¥")) ], ~. 10
vhere ‘s = [1.77245/(n{n~1}) ] > d{i) z(i). 2.11

For a sample of size n, the subscript i represents the rank
of the observations in ascending order and g(i) represents

the distance bhetvween two adjacent observations; 1i.e.,

g(i) = X(1i + 1) - X{i) for i = 1,eeepn~1 2.12

and d{(i) = i{n - i) 2.13

The Wainer and Thissen study was inconclusive as to the
value of r*(t) and Chou {1979) has shown it to perform well

in some situations.



Transfars=: Spearman’s Rho - £#*(S)
The tracsformed Spearman®s rho
r*{s) = 2 sin (3.14159/6) r({(S) 2.14

is viewed as having robust properties and was included in

the =tudy of robust correlation estimation by Wainer and

Thissen swith mixed results. The ease of calculation and

familiarity make it an attractive estimator to use.

Bivariate Trimming - r¥ (BVT)

Bivariate trimming refers to a general class of robust
estirators which trim a specified percent of observations on
the major and minor axes. Once a given percent of the
sample observations are identified as outliers, they are
trimmed and the usual Pearson calculated £from the reduced
sample; The procedures for identifying the outlieré differ.
pevlin et al. used an iterative approach and Chou - (1979)
used the 1eas£ squares estimates of locaiion and scale to
standardize the univariate distributions and then obtained
the croséproducts. The largest positive and negative

crossproducts were then trimmed.

In this study 10% symmetrically trimmed means and
variances were used for standardizing with 23% symmetric

trimming of the crossproducts.
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isquare Coefficient - r#*(B')

The bisquare correlation coefficient was introduced by
Mosteller and Tukey

. 2 1/2
r*¥{B) = + 1 / [1 + bar(Y¥Y-bX) / b bar(X)] ‘ 2«15

with the sign of b, where b is the slope of a bisquare
regression fit. .The bisquare regression fit results from an
- iterative weighted least squares algorithm with the weights

determired hy the relative masnitude of the residuals.

Baranogski {1980) investigated several aspects of this
estimator includirng pfoblems with rééﬁect to the preliminary
bisquare regression fit. A problem of this estimator is the
lack of stability’of the estimate given the transposition of
X and Y. The use of the least syuares start and a constant
‘of 9 wvas the prefered solution for the regression fit. To
scive the problem of transposition, Baranowski proposed an
averaged bisguare,' " L*(B'), obtained by fitting both
regression lines, calculating both correlatiomn estimates and
taking the average. This averaged bisquare estimate was

.more efficient than the single bisquare in all situations.
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3. DATA and DESIGHN

Long tailed distributions were simulated by the
generation of éontaminated bivariate normal distriwvutions.
{This is one of several approaches used in other research
and is not intended to imply that this is how long tailed
distributions occur in real situations.) Givern a bivariate
standard normal distribution with a specified correlation,
observatiohs were replaced with probability Leota with
observations from a bi;ariate normal distribution ¥ith mean
equal to zero and variance dreater than one. The
correlation in the bivariate standard normal and the
contahinating- normal  distributions were equal <to avoid

ambiguity of what 1is being estimated-

The random normal deviates vwere generated by the
Marsaglia rectangle-swedge nmethod. The randoa uniforam
numbers used in thé%hethod were generated. by the Llinear
congruential method, incorpbrating the exchange sequence of
quclaren and Marsaglia (Algorithm M:; Knuth, 1969) to break
the serial correlation between successive neubers. The
desired variances and correlatiéns vere induced

algebraically.

Thirty-tvo contaminated situations resulting £from the

jpe
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11
1. population correlation: tho = .0, .3, .6 and .9

2. sample size: n = 20 and 40

w
.

" standard deviation of the contanminants: sigma = 2

and 3

4. level of contaminaticn: beta = .10 and .25.

Eight non-contaminated situations were also examined for the
combination of sample size anrd population correlatiomn.
These bivariate standard normal situations can be

represented as cases where beta equals zero.

For econony not 511 situations wvere uniquely generated.
Given sample size and ,population correlat:.n, the same
pivariate normal data were used repeatedly across all
contaminating Situations. This also increases the internal
consistency of the comparisors of the estimators across the
various contaminated situations. A similar scheme was used

by Devlin, et al.

In order to generalize the results of any Monte Carlo
study, the variability of the statistics should be small.
Pfior to the study, it was decided that the maximﬁm standard
error of the mean of the correlation estimators shculd be

«01a Sihce the variability is inversely related to _the

- number of replications, regression sampling (Cochran, 1963},

a variance reduction technique, was used in this study to

reduce the required number of replications given the desired

13
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precision. The Student®s t transformatioﬁ of the maximum
likelihood estimator of the pqpulation correlation, given
ihe assupptions of zero mean and equal variances, (Kraener,
1975) calculated oniy from the observaticns from the
noﬂ-éontaminated bivariate distributions was used as the
auxiliary variable. Table 1 gives  the number of

replications used for the various parameter settings.

Insert Table 1 about here

4. RESULTS

To summarize, the following correlation estimators vere

calculated over forty parameter setting:
1. the Tukey correlation - r*(t),
2. the transformation of Spazarman's rho - r*(S),

3. the biweight standardized suns and differences -

£*(BESID),

4. the standardized sums and differences - r¥*(SSD) -
using 10% Symmetrically trinmed means and
vériances,

5« bivariate trimming - C*(BVD) - using 10%

symnmetrically trimmed neans and variances for
standardizing X and Y and a 20% symmetric trimming

of the crossproducts,

14
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6. the averaged bisquare -~ —r*({B') - with a least
squares start and constant ¢f 9 for the bisquare

regression fit, and

7. the Pearson correlation coefficient - r{(P).

Mean square error which takes -ato account both the
variability and bias of an estimator was the principal means
of evaluating the robust estimators,

2 _ 2
MSE = S(r¥) + (r* - rho) . ’ S 4.1

The MSE'S for the estimators are presented ih Table 2 using
the  two-way analysis by medians (Tukey, 1977). This
procedure decomposes the MSE into a grand effect, the
effects ¢f the estimators ((r*)) and the effects of the
contamination (ct). The valueé in the subtables are
residuals. This type of analyéis is especially useful when
‘the residuals are small relative to the other effects since
we can focus directly on‘ the effects. Any MSE can be

reconstructed by summing the three effects and the residual,

MSE = grand effect + r* + ct + residual. 4.2
Insert Table 2 about here

All values of MSE were multiplied by 10000 to make the.

tables more readable. For each correlation and sample size



14

there are two tables, one fer each of <the different
contaminating standard deviations. Within zach subtakle the
grand effect is in the upper right, v¥* effect in the left

column and contamination effect in the top row.

.The contamination effect is smaller for. a standard
deviation of. two than for three and fcr ten perqeﬂt
contamipation than for twenty-five percent. The residuals
for . the subtables in Table 2 are not as small as ve migkt
like. In some cases, the residuals are larger thar the
effects indicating that an additive model is not appropriate
here and that some sort of interaction might. be taking
place. No one estimator is best in all situations and the
differences between the estimator effects are small, except
fr.r an occasional situation uheré one estimator stands out
as besf or Worst, such as the large negative effects for a

correlation of .0.

Insert Table 3 about here

_Table 53 contains the grand effects of MSE. WHSE varies
with the level and extent of contamination as well as sample
size and populationlcorrelation.’ To better understand the
MSE fof the various estimators, bias was examined. Table 4

contains the means, adjusted by the regression sampling

" procedures and multiplied by 1000, for the Pearson as well

as the six robust estimators. Contamination and sample size

do not appear to affect bias and since the residuals are

16
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generally close to zero, there does not appear to be any
interaction. Since the maximum standard error of the nmean

is .01 for §}l estimators, a difference of 1less than 20

.between estimators could be considered negligible. From

this table, a bias of r*{S) to underestimate the correlation
for correlations of .9 and .6 clearly stands oute. The only
other bias occurs for r*(BVT) for large sample size and

correlation of .9.

Insert Table 4 about hére

Table 5 contains the drand effects of the adjusted )

meansa Generally bias is not a problem except for small

sample size and a very large correlation vhere there is a

bias to underestimate the value.

Insert Tabie S about here

In addition to MSE and bias, the efficiency of the

estimators relative to the Pearson is considered,

efficiency = MSE(r(P)) / MSE(r*)e. 4.3

A robust estimator should bave.smallér HSE- than the Pearson
in all contaminated situations and perform almost as well as
the Pearson when no contaﬁination is present. Table 6
contains the efficiency of the six robust estimators. When
éontamination is present, we czm always do better than the

Pearson and when the data are from a bivariate normal

17 | | y
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distribution, the Pearson is best, as would be expected.
Insert Table 6 about here

5. DISCUSSION

The following discussion of the individual estimaters

draws on the information in the preceding tables.

The estimator r*{t) performed reasonably well over all
situationse. In more than half of the situations it has the
smallest or second smal.est MSE and never the largest. It
is better than the Pearson in all situations except for a
correlation of .9 and a contaminatiag standérd deviation of
2, but in this case thér% is not much difference between the
MSE for the two estimators. It also performed well in the

non-contaminated situations.

The performance of ©*(S) is related to the value of thé
population correlation. It has the smallest MSE for
corrélations of .0 and -3 and is almost twice as efficient
as the Pearson in ‘these sitﬁatidns. Its performance for
correlation of .9 is worse than the Pearson. '~ In spite of
this, it nefer has the largest HSE. The relatively poor
performance for the larger correlations is due to the bhias
of underestimating as mentioned above. These results are
consistent with those of Hainer and Thissen, which indicated
that this is the best estimator for small values of

correlation but not large.

18
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The estimator r*(BSD) 1s never among the best
estimators and for many situations has the largest MSE. 1Imn
Table 6 ve can see that it is often worse than the Pearson,

éspecially for large correlations.

Overall, r*(SSD) performed about as well or better than
the Pearson. It is neither the best nor the worst estimator

in any situation.

Inconsistent results occur fdr r*(BVT). It usually has
the largest MSE, especially for correlations of .9 whenAits
effect is approximately twice that of the grand effects for
the subfahles in Table 2.' For correlations of .9 and .6,
the MSE is larger than that 'of the PRarson. For
correlations of .3 'and F.D and a contaminating standar&
deviation of three, r*{(BVT) has the second smallest MSE for
b&th ‘sample sizes and is 50% mnore efficient than the
Pearson. For a standard deviation of two, it perforass
reasonably vell for the small samples: but not.for the large.
It does not perform vell for the bivariate normal

distributions.

The averaged bisquare, r*{B'), is usually the best
estimator for correlations of .9 and .6 and is anmong the
better estimators for the smaller correlations. 1In terms of
efficiency, it is dlways better than the Pearson for the
contaninated situations and is closg to the Pearson in the

non-contaminated situations.

19
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6. CONCLUSIONS

In fhis study, the performance of many of the
eéstimators is dependent on the value of the population
correlation, sample size and/or type of contamination. The
estimation of very large correlations appears to represent a
special situafion. Two estimators that stand out as mot
beimng sitmatiomn specific and demonstrate robust propérties
are the averaged bisquare, i*(B') and Tukey, r%*{t),
cqrrelations. The - transformed Spearman's rho is an
attractive estimator because of the ease of calculation;
its} performance however 1is dependent on the correlation.

For5sm§11 correlations it is clearly the best of all the

| estimators considered in this study but degenerates as the

correlation increases such that it is'amonq ‘“the worst for

- correlation of .9. 0Of the other three estimators, r¥*(SsD)

deronstrated robustness and, given its performance in other
studies, warrants further investigation. <The r*(BSD) did
not demonstrate robustness in this study and t*(BVT)

demonstrated limited usefulness.

The results of this study are not eompletely coﬁgerahle
to 'eome‘ of the previous research since only one type of
non-Gaussien situation is considered - contaminated normal
distributions. Devlin et al. used four other types of
distributionskin addition to the contaminated normals. Tvo
0of the leading estimators from their study, r#(BVT), in a

differeni forﬁ, and r*(SSD) did not perform as well as sone

20
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of the other robust estimators included in thi .Y« The
performance of r*(B?) and r*(t) with respect t o .er =zypes.

of pon—Gaussian distributions is not known.

. 7. REAL DATA EXAMPLES

This was a Monte Carlo study in which the data were
generated to possess specific distributionallpropérties and
known parameters. It is important to relate the usefulness
of this type of research to real data where the
distributions and parameters are unknown and the purpbse ‘6f

analysis is estimation.

Insert Table 7 abcut here

Two data sets are presented im table 7. These are
stuydent scores on mnidterm and final exams in intermediate
(example 1) and advanced (example 2) statistical analysis
classes. PFigures 1 and 2 contain the scatter plots for

these datae.

Insert Figure 1 about here

In figure 1, there are two observations in the lowver
left corner. The effect of these points is that the Pearson
vill tend to overestimate the relationship between the
variables. Table 8 contains the cprrelation estimates. All
siy of the robust esiima£es are smaller than that of the

Pearson, minimizing the effect of the two "outliers". The

21
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nost extreme estimates are r*(B5D) and £*{BVT).

Insert Table 8 about here

In fiqure 2, suspicious or 4questionable observations
are on the nminor axis and would cause the Pearson to
underestimate the correlation. The robust estimates are
larger than that of the Pearson except for r*{S) and
r*(BVT). These data might be considered to have moierately
high correlation (.7) and e saw above that r*(S) has a
tendency to underestimate in this situation. The values for
f*(B') and r*(t), .703 and .705 respectively, are very

close. The value for r*(SSD) is most extreme.

Insert Figure 2 about here

The above data sets are small but represent the ability
of the robust estimators to handle different types of
suspicious points. The different estimators give different
estimates indicating that they treat observations,
differently. 'The«application of robust estimation to real
data sets_'and_lpxobiéms has just be§un and it needs to be

extended and continued along'vith~ncnte Carlo investigation.

R
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TABLE 1

Number of Replications

n = 20 n = 40
nct ct nct ct
rho
9 100 100 100 100
-6 300 300 100 100
«3 500 600 200 300
-0 500 600 200 330

nct - no contamination
ct - contamination

- - — ———— Y S - - —




rho
9

T*(B")
*(BSD)
T*(S)
T*(t)
T*(BVT)
r*(SSD)

.6
*(BY)
T* tBSD)
T*(5)
r*(t)
T*(BVT)
r#*(SSD)

.3
T*(B')
74(8SD)

T*(S)
T*(t)
T*(BVT)
r*(SSD)

.0
T*(3')
T*(BSD)
T™*(S)
()

" TA(BVT)
r*(SSﬁ)

TABLE 2

...................................................................

MSE for r*( )
n =20
2 3
10 .25 .10 .25
] ]

-1 0 0 7 -2 3
28 -1 35 3 -2
-2 0 1 -6 -1 1

64 -3 4 95 -6

371 -10 10 442 -28 28

7 -8 9 64 -61 60°
-7 -1 1 -40 4 -3

-35 -2 -8 10 -10
44 1 -1 23 -3 3
7 -3 2 8§ -11 1

543 -14 14 659 -47 46

3 -1 12 11 -16 16
27 -1 "2 3 -9 9
.35 4 -3 -106 24 -23
8 -5 5 13 9 -9

3 7 -6 -58 23 -23

644 -5 5 789 -29 30

9 0 1 29 -13 13
55 -4 4 31 -23 22

-3. 2 -2 -136 13 -14.

-9 1 0 8 24 -25
13 1 0 ~-126 16 -16
27 -5 § -8 -28. 28

estimator effect

Ny

times 10000

n = 40
2
.10 .25
]
<1 1 22
1.0 -5
0 0 1
0 o0 10
1 -1 -3
-1 1 48
0 1 -1
-10 10 192
15 -16 -38
0 1 32
1 -1 -4
12 -13  -29
-2 2 39
0 o 4
-9 9 302
-8 28
-1 13-
2 -1 -59
-5 5 12
9 -10 -21
-3 <11
-17 16 372
2. 3 20
-8 8 23
1 -1 -68
-1 1 2
6 -6 -36
3 -3 -3

*% contamination effect

XA

A%

£

A&
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TABLE 3

Grand Effects of MSE (times 10000)

n = 20 n = 40
sigma 2 3 2 3
rho
9 34 52 14 22
-6 371 442 152 192
3 543 659 250 302
.0 1y 789 304 372

- D Dy A g s T D D D D ey Sl S e . D S i - —_— D > P VD S -
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TABLE 4

Adjusted Means (times 1000)

n = 20 n = 40
sigma 2 3 2 3
beta 10 .25 .10 .25 .10 225 .10 .25
* ¥
rho
.9 889 4 -1 0 =7 893 2 3 -2 -3 #*=%
. (P) 1 1 -1 3 0 0 -2 1 =3 6
£#%(B*) O 0- 0 0 3 0 -1 -1 2 2
£ * (BSD) 3 1 0 0 -4 -3 0 -1 3 =5
r#*(s) =25 1 2 0 0 -6 0 1 0 0O
r*(t) 2 =1 -1 2 1 0 -2 0 0 6
£ *(BVT) 5 -1 7 1-1 39 8 2 -1-26
r*(SSD) -3 =3 0 0 4 -3 0 -1 3 0
.6 578 5 0 0 -10 598 1 2 =2 -1 %%
r (P) 4 -1 1. 0 4 3 -3 -2 1 3
r*(B%) 0 -1 0 -1 2 3 -1 0 -2 S
£ * (BSD) -3 3 0 0 -6 10 7 0 0 -10
C*(S) -6 0 1 -2 0 -18 4 =3 3 -14
r#(t) .7 =3 0 0 5 0 0 -3 4 0
£ * (BVT) 0 4 3 -4 -6 5 9 1. -1-17
£ *(SSD) -4 1 -1 2 =3 -12 0 0 -2 1
.3 280 2 0 =1 -6 295 1 2 0 =1 %%
t (P) -6 -1 3 -9 0 3 0 -1 -2 2
r*(B") 1 0 1 -2 2 2 -1 0 -4 2
r*(BSD) "5 -1 0 3 0 4 1 0 0 -5
r%(s)- . =7 0 0- 0 =2 -0 5 -1 1 -4
r*(t) 0 -1 1 -5 0 2 0 0 =2 2
£ *(BYT) -3 0 -1 0 -6 o 4 0 1 -9
£ *(SSD) 1 0 -1 1 -1 -2 0 -1 4 o0
.0 -3 0 -1 1 0 2 4 -4 3 -6 *%
r (P) 03 -1 0 -1 1 0o 2 -3 9 =3
C*(B?) 3.1 -2 5 =1 o 0 0 -1 -1
£ % (BSD) 9 .5 1 -1 -3 -2 0 0 -1 1
L*(S) -5 =1 =1 0 0 -1 0 -1 1 o0
r*(t) -1 0 1 0 o0 -1 1 -2 5 =2
C#(BYT) -5 0 1 =1 2 3 -2 1 0 1
£*(SSD) 0 2 -2 2 -4 1 -1 4 =2 0
% estimator effect #% contamination effect

29
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TABLE S

Grand Effects_of Adjusted Heans

n = 20 n = 40

o v i - — i ——— S -

rho

-9 .889 -« 893
b -578 «598
.3 . 280 « 295
.0 -.003 <002

’ j3(] ;
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TABLE 6

MSE Efficiency Relative to the Pearson

40

=]
it
N
o
=]
]

signa 2 3 1 2 3 1

<

beta .10 .25 .10 .25 0 <10 .25 .10 .25

r*(B')  1.00 1.17 1.26 1.52 .95 1.22 .98 1.98 1.08 1.00
r*(BSD) .90 1.12 .85 .97 .88 1.07 .84 1.69 .73 1.00
£¥(S) .44 .64 .50 .73 .55 .68 .56 1.03 .60 .76
r*(t) <93 1.11 1.12 1.24 .91  1.09 .98 .47 1.12 1.00
r*(BVT) .29 .39 .31 .42 .27 .29 .25 .48 .27 .23
r#{SSD) .86 1.16 1.22 1.53 .75 1.09 .88 1.65 .86 .81

r*(BY) 1.07 1.10 1.30 1.28 .96 1.12 1.10 1.58 1.24 .97
r*(BSD) <99 .95 1.28 .95 .96 1«06 .82 1.36 .71 .87
r*(S) 1.01 1.00 T.41 1.32 .8% 1.02 .81 1.46 .90 .75
c¥(t) 1.02 1.09 1.29 1.25 .99 114 1.06 1.47 1.20 .96
c*{BVT) .88 .89 1.23 1.3 .70 .83 .65 1.26 .70 .68
. r*¥{SsD) .98 .96 1.30 1.15 .83 1.03 .80 1.40 .88 .81

L*{B?) 1.09 1.08 1.42 .25 .96 T34 1.13 1.55 1.27 .97
c*{BSD) 1.02 1.05 1.34 .21 .88 1«12 1.17 1.58 1.36 .92
£¥(5S) 1.13 1.18 1.63 1.5% .85 1.2 1.29 1.96 1.82 .93
c*{¢) 111 1,13 1.36 1.2% .96 1.18 1.19 1.56 1.38 .98
c*(BVT) 1.04 .11 1.89 1.4 .77 ~98 1.12 1.62 1.65 .80
c*¥(SSD) 1.05 1.08 .87 1.30 .77 .07 1.16 1.71 1.48 .82

r*(B°) 1.07 1.07 1.33 1.14 .93 1.16 1.10 1.56 1.18 1.00
r*(BSD) 1.00 .99 1.34 1.13 .89 1.10 1.02 1.60 1.15 .99
r*(Ss) 1.14 1.15 1.62 1.47 .93 1.20 1.16 1.97 1.55 .97
c¥*(t) 1.09 1.10 1.30 1.23 .98 1. 17 1.12 1.56 1.29 1.03
c*(BVT) 1.10 1.10 1.59 1.46 .88 «98 .99 1.72 1.44 .81
r*{(Ssp) 1.04 1.63 1.43 1.17 .83 1.04 1.04 1.67 1.25 .90
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TABLE 7

Real Data Examples

DATA 1 DATA 2

obs. X Y X Y
1 51 44 42 40
2 71 49 38 38
3 78 57 36 42
4 34 11 40 42
5 80 55 35 6
6 73 52 45 39
7 56 58 13 26
8 64 54 17 8
9 73 50 40 42
10 66 53 37 45
11 52 51 14 . 5
12 7% 51 38 34
13 54 41 31 34
14 57 59 25 5
15 54 b4y 32 38
16 79 47 24 0
17 37 4y 38 22
18 44 58

19 61 43

20 66 4y

21 53 48

22 58 55

23 54 50

24 51 42

25 80 59

26 . 33 13

27 80 58

28 53 43

29 67 52

32
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TABLE 8

correlation Estimates for Real Data

DATA ¥ DATA 2

r{P) .638 .683

£* {B?) .468 .703
r#* (BSD) -396 .710
r#(s) .543 «667
r#*(t) .585 .705
£* (BVT) . 352 .664
r*{(SSD) . .621 .812

T . A —— S i i L i S o T L AR e D A D s AP W e

33




60
55

50

40
35
30
25
20
15

10

3

33

PLOT OF Y=*X
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FIGURE 1
EXAMPLE . 1
SYMBOL USED IS *
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FIGURE 2
EXAMPLE 2
PLOT QF Y#*X SYMBOL USED IS %
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